Team No.: 22

Team Members: Kameron Bielawski, Caleb Bryant, Steven Hu, Guhyoun Nam, Neel Patel

Project Name: The Watcher - https://github.com/neelpatelbiz/watcher_frontend

Project Synopsis: A webpage that displays network traffic information and packets captured by
a computer with access to all network traffic in a local network.

Project Description:
For our project we are creating a website that will present data about network traffic in a

local area network to its visitors. The site will be hosted on a machine performing packet
capturing within the LAN by using a NIC in promiscuous mode. The value this project provides
is giving users an easy way to gain at-a-glance insights into the traffic crossing their network.
Graphs, charts, warnings, alerts, and other notifications are easy ways to engage the user while
providing useful data.

This project has the potential to assist professionals and hobbyists in spotting issues
learning about their networks. For instance, IT professionals and network administrators could
discover nefarious traffic and unencrypted data being transmitted on a workplace's network. This
would help protect the data of employees. Additionally, data center professionals could find the
use of this application beneficial for sampling the types of traffic being sent within their fleet.
When many requests are being retransmitted, this could signal an issue with a single machine or
service and help system administrators diagnose problems.

By the end of this project, we hope to have a functioning traffic sampler that is capable of
interpreting packets and aggregating network statistics. Depending on the rate of traffic,
performance of the OS, and hardware we are using, the traffic analyzer may be able to analyze
all packets being sent across the network and give interesting analytics with the full data set.
Constructing a GUI for this analysis is a top priority and we hope to have a usable and
convenient interface for understanding the data as well as providing information about possible
security concerns.

Project Milestones:
First Semester:

-Find a packet processing framework for capturing network traffic in promiscuous mode (10/7)
-Capture traffic using a packet capture library(10/14)

-Document Packet Capture functionality (functions, classes for packet capture PCAP back
end)(12/3)

-Generate statistics relating to number of packets captured of a specific protocol(10/21)
-Document Request Handler functions, httplistener class (REST api back end) (12/3)

-Format statistics into graphs to be displayed in a web page (10/25)

https://github.com/neelpatelbiz/watcher_frontend

-Document react components, asynchronous functions, file hierarchy (Front end) (12/3)

Watcher Development Gantt Chart

Team X2
Probect Tiart Sal, ' 38/2021
Dl oy "Wiemlkc !
- = =]
Iniiia| Flarning Fmsarch
Gaiher |nitial Dauc Regquirementy Al 10 L E T a1
Fuckat C i Feal, Culoh, Barn 100 AR b Tpi Thal
Remparch Frent End Frameraori and Tool Stwwen Hu, Gulrpcun Ram 10T 2T a1
Danige Freng Erd snd Back Erd |ndssosresc on Al 10 ki T L3I
Feznit End snd Back End Denign Cechioss wll 10 AL /a4
Irplamariation Phas
implermmet Lrss Packet Capiamm Feal, Culoh, Earn 100 10,155 11 mfaxfan
Landing Page I dexign Siwwen Hu, Subrpoun Kam 100 101511 nfarfan
Tewt wab page imisreciios wits back ered ulsg npm wrver srd fuon-erer AL L= 10,355 11 nfasa
and 1 ! A within Al s 10,39/ 11 T TR
vy rew om0 BT P o
Sep 13, X121 Sop 30, 0EL Sep IT, M2 et 4, 2121 et 13, 3021 ek 18, 2001 Cict 25, 2L How 1, 3001

NHNEDPEIDNTINNEIEDEAD LI 343709 0001 I:IL#IIUIJLI-II.EI:I:IHI:I|.H:IIE-:IJ.IJ’I MHB1 21413 4a7

Second Semester:

-Filter packets based on protocol type, MAC address, or IP address fields (1/16)

-Write packets captured to a pcap file for later use or analysis and display in front end (1/27)
-Document PCAP file features (2/5)

-Determine additional features (different packet capturing methods/ data uses) (2/24)

-Implement possible new features and test features (4/24)
-Document new features (4/29)

-Create a test network using virtual machines for simulating LAN traffic (3/23)
Semester 2 Gantt Chart

Team 22
S, 0L
Prajct Sart:
]
Chrplay Wek:
N " N N .
Wet Pags Skrtche Modeling Al s 113z LTI
Compiot on af Froni E=d Dagram Al s 1 LiIm/12
Fillaw Lhar to Select Pachria for Capturs fram Frost ssd Al s L2z LG/ 1T
Daplwing FCAR micrmation in frost and il m eI LTI
Fenparch and Daterrnire Additionsl Festusss [Fromiend srd Dedond] Al [4 2y 234117
!
PFeaparch Texi Metwarty ssd Virusl Eeckines for teating the waicker wll [Firstrrd B TR ERS
Text Appicstion wing virusl machizes or e setwerk Al s 1z AT
Text Ceber Packat Capturng | Proceing Framesssris uning PCap+ AL s STeTTrr) anfza
Improe Prrfarmance wits Al pmaie Pt Frocmang Framewsrk Al s ajTfaz aj14/11
gt Addkonal Fariune TED all [A4 a1z
vy e e AENTET o o
Ian 10, 2122 117, 302 Ian 14, A122 Inm 31, 302 Feb T, 1022 Tk 14, 2002 Feb 11, 2012 Taik 20, 2002
HURDDWERITHEEHIARINE2HITHSEN L2 3435 87190000 EDPEIDNINANBI®ZDE L 2 5 45 0

Project Budget:
Estimated Budget: $0

Tools we will need:
- Computer with NIC (promiscuous mode enabled) <- can be virtualized (using virtualbox)
- Ethernet switch with mirror port <- can be virtualized
- Other Computers for testing functionality <- can be virtualized

Special Training: Learning about Networks, the Internet, OSI model, Packet Types

Software Design:
How the software works:

The software we are designing is intended to run on a server within a rack of a data center
or within a LAN. The software will utilize common features provided by switching hardware and
ethernet adapters to perform packet capture on all packets on the LAN. Our software, "The
Watcher", requires that the computer it is running on is connected to the mirror port of the switch
so that it can receive all multicast and unicast traffic directed to any computer connected to the
switch. To recognize this traffic, the NIC must also support "monitor mode". To create a rich user
experience with multiple useful features, a front-end and back end must be constructed. The
back-end must expose multiple services each providing a different functionality. Asynchronously
serving the web page itself is important, but the site is not very useful without a variety of other
asynchronous services providing data to be consumed by the client. These services must utilize
data provided by the back end and provide the data in a way that allows the front end to consume
it and display it in an understandable way for the user. In this way, the development of our front
and back end is tightly coupled due to the cohesion needed between the services provided by the
"Watcher" and their consumption by the client-side.

Fig 1.) All Traffic Directed to Watcher (Bottom Server) via. Port Mirroring in the Switch

Construction of the back-end was made possible using two main libraries. For the live
capture of network traffic, we made use of the PCap++ library. This library provides API's for
many useful packet capturing frameworks and libraries such as DPDK, PF RING, and libpcap.
For our purposes at the moment, libpcap is sufficient as it provides all of the packet analysis and
network capture tools we need. It's performance in terms of latency, however, is limited to the
performance of the linux network stack's raw sockets. PCap++ is capable of opening any
interface on the machine for packet capture, capturing traffic on a specific interface, sending

packets from an interface, as well as filtering packets. We utilize the packet capture functionality
provided by PCap++ as well as the packet filtering capabilities. Additionally the library allows
reading and writing to pcap files, so that we can allow the user to choose certain types of packets
they would like to view later. We assume that the server running the applications and services is
utilizing a NIC in promiscuous mode, and that the required port mirroring capabilities are
provided by the switch distributing traffic throughout the LAN or server rack. This will allow the
duplication of all packets received by any computer on the network and the redirection of these
duplicates to the network traffic analyzer. It is important to note that the "Watcher" is still fully
functional without using a NIC without promiscuous mode enabled, but it will present a limited
data set due to the NIC's inability to receive packets destined for alternate mac addresses.

2000 \Watcher

React ReST Api
Frontent

pcap Workers

Packets

Fig 2.) Watcher Software Structure; A machine in the LAN connects to the Watcher to inspect
traffic (loads web page from port 80 and asynchronously received data via port 5000)

The bulk of the work done by the application involves the capturing, processing, and
filtering of packets received on the interface of the "Watcher". This is accomplished using the
PCap++ library, which allows the live capture of packet data in multiple modes. Although
PCap++ offers both asynchronous and blocking methods for capturing packets, we opted for the
former since the main thread has other responsibilities besides capturing of packets. The main
thread cannot be blocked while capturing a set number of packets since updating of data
structures and other services must take place at the same time. Utilizing a callback function on
the reception of every packet incurs a lofty overhead, however, which is not ideal for an
application which may be processing large amounts of traffic destined for every node in the

LAN. Thankfully, PCap++ offers an asynchronous capture method that allows capturing of
packets to take place on a separate thread while the main thread still has access to captured
packets. We are then able to utilize the main thread for the other services.

The data captured by the packet capture thread is exposed to the front end using JSON
since Javascript objects are utilized extensively for rendering the React Components on the site.
This also allows complete separation of the front and back ends in terms of development as well
as usage. One could utilize the front end with an alternate packet processing framework exposing
the data, as long as the JSON data provided is the same. One could also create their own unique
front end using the watcher thread application's ReST API. These design decisions allow
flexibility regarding usage of the limited services currently provided by the back end and a
standard for expanding the services provided as development continues. While the site could be
loaded from a server different from the one the ReST API resides on, we assume that both the
site and the asynchronous services reside on the same machine, the "Watcher".

Client

E =
—_—

Method: GET

(HTTP/1.1)

Accept: text/json
-

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Content-Type: text/json

Fig 3.) Client Asynchronously Requests Data being collected by the watcher (Data is received in
Jjson format)

To implement the ReST API we utilized the C++ REST SDK created by Microsoft which
allows the creation of asynchronous APIs using C++. This simplified the design of the backend
by allowing the creation of a single multithreaded process that accomplishes a multitude of tasks.
Namely, the process is able to capture packets on a given NIC, process the packets, store data
related to the packets in memory, and deliver the data using a client-server communication
model. The client-server communication model is made simple due to the fact that we are using
ReSTful services utilizing the HTTP protocol. All data we intend to expose can be accessed
using HTTP Get requests and the responses are provided by the backend process. The payload of
the responses contain the JSON data that the client is requesting. The data is then utilized by the
page loaded in the browser to create graphs, charts, and other analytics.

Design Constraints:
Designing asynchronous services in C++ can be challenging due to the language design.
Compared to a language like Javascript, which was designed to support asynchronous

applications utilizing features like callback functions and promises, C++ leaves a lot to be
desired. Thankfully, C++ REST SDK assists us in many aspects of asynchronously responding to
HTTP requests, but we are limited to the classes provided by this library. The library supports
assigning callback functions to http requests using the GET, PUT, POST, and DELETE methods,
and creating completion of asynchronous actions, but the code is far less intuitive than similar
ReST servers implemented in Javascript due to C++ REST SDK's use of function objects and
utility classes for converting arrays, objects, and primitive types to and from JSON. Although
this library has assisted us greatly in development, more complicated asynchronous scenarios,
like updating specific pieces of data, or manipulating specific fields, could be a challenge.

We are also constrained by our schedule. A full understanding of traffic patterns within
data centers or local networks would take time and research to obtain. Creating an application
that creates notifications for every possible security threat or vulnerability is therefore out of the
question, since our timeframe and understanding of network security is limited. Our goals for the
application must be obtainable relative to the timeframe we are given. The services we can
provide will be limited in scope, but if they are fully functional they will still provide valuable
insights into the network traffic. Additionally, creating a scalable backend that exposes useful
APIs will make expanding the front end website's capabilities easier as well as allow further
additions after the deadlines imposed by the senior design lab.

Ethical Issues:
Ramifications of Inspecting Network Traffic:

When logging and inspecting network traffic, it is important to be aware of the potential
consequences. Because unencrypted traffic and sensitive data could be received by our
application, we must ensure that the data's usage is ethical. This is also encouraged by the ACM's
code of ethics which (General Ethical Principles 1.2) states that a computing professional should
"seek to minimize the possibility of indirectly or unintentionally harming others, [by following]
generally accepted best practices unless there is a compelling ethical reason to do
otherwise"(ACM). Our goal is to help others understand the network traffic on their LAN, and
our application does not explicitly provide tools for extracting sensitive data from unencrypted
packets or penetration testing of any kind. These features could be implemented by derivatives of
our work, however. This is not our responsibility, though, since our implementation only
provides ethically gathered information that is intended for use by system administrators.

Ethical Ramifications of future features:

If development on the "Watcher" continues into the future, a variety of features could be
added that process many different fields of the packet data. If misused, an aggravated employee
or system administrator, could utilize the tool in a way that is nefarious. For instance, if we
provide a general purpose packet filtering tool within our application, the user could save packets
utilizing potentially insecure protocols and inspect them later. Examples of this include HTTP
packets not encrypted using the Secure Sockets Layer (SSL) and the telnet protocol. Someone

with access to a local network's "Watcher", could filter for these packets and inspect the
potentially insecure data. Our intention in creating the "Watcher" is to allow system
administrators to see if sensitive data is potentially being exposed and allow them to take
measures to stop it. If large amounts of unencrypted data are being sent, system administrators
would be able to use the "Watcher" to discover this. In this way, we intentionally follow the
ACM's general principle that encourages respecting privacy. We are providing a tool that is best
suited for ethical usage which, with the addition of this functionality, could prevent sensitive data
leaks.

Authorization to access computing/communication resources:

Because of the nature of network monitoring software, computing professionals may use
our software and find that action needs to be taken to protect their network. The ACM specifies
that computing professionals should not access another's computer system or data without a
compelling belief that it is consistent with the public good. While our application provides
information that can be used to profile a network, it is done to assist ethical professionals. We are
not ethically responsible for a computing professional who takes it upon themselves to resolve an
internal issue by accessing a system without authorization, or harming others through inhibiting
the functioning of an important system. Our intentions align with principle 2.8 of the ACM's
code which encourages accessing communication resources only when authorized. This is
because our application must be installed by a user with root access to the system and physical
access to the network switch to provide the needed port mirroring and promiscuous capture
features.

Intellectual Property Issues:
Software Licensing (Use of external Libraries/Frameworks):

Both the C++ REST SDK and React Framework use the MIT License which allows
commercial use, modification, distribution, and private use of all the software provided. Because
of the permissive nature of this license, we could use these libraries for creating a commercial
application and distribute copies of this code. We could also sublicense this code with a more
restrictive license allowing us to "copyleft" the software we create. The PCapPlusPlus library is
licensed under the Unlicense which is just as permissive as the MIT License. We are not required
to distribute source code with our product and we are free to use all three of the aforementioned
pieces of software commercially and distribute them for use. These licenses provide us with the
freedom to use and redistribute all of these pieces of software in any way we may choose in the
future.

Our Choice of License:

With the freedoms given to us by the licenses of the code we are including in our project,
we have no obligation to provide our code under the same license. Our choice of license could be
more restrictive, like the GPL, which would require all derivations of our code to be copylefted
and require that the sources be released. We could also create proprietary software, disallowing
the modification or redistribution of our project. Our choice of project could lend itself to a
proprietary license if we intended to sell our software for profit, and we did not want others to
redistribute it for free. This is not our intention, however, since other network traffic analysis
tools already in commercial use provide far more features than our project. Some implement
advanced threat detection, machine learning, and behavioral analytics, to provide a far more
robust solution than we are currently offering. With this in mind, we intend to license our project
using the MIT License that the React Framework and C++ Rest SDK libraries use. This is
because, after our development for the semester is over, we would like to see more changes made
to the front and back end of our network traffic analyzer. Derivatives of our code with alternate
front ends, advanced packet capturing, and improved data analysis are possible, and we would
like to see what others can create.

Commercial Use Possibilities:

Because our software is licensed under the MIT license which is very permissive, others
can utilize our work, and build more complex packet analysis tools and websites. This was our
intention when deciding to release under this license. Companies and businesses could also
utilize our software and redistribute it for profit under this license. While it is not in a state that
would be competitive with alternatives already on the market, some modifications made by
cybersecurity and data center professionals could turn our project into a viable tool. We would
hope to be able to learn from any modifications or derivatives to our software, but we must allow
others to redistribute our software without inclusion of the source code under the permissive MIT
license. One strategy to see all derivations of our work would be to use a license like GPL, so
that anyone using the software would have to release the sources along with any product they
distribute. Although this would allow us to see anything created using our project as a starting
point, it is not our intention to limit others in this regard. The tools and libraries that were
instrumental for us in creating our project were all licensed under the MIT license or were in the
public domain, which encourages us to provide the same availability and permissions.

Change Log:

1)

Previously we did not have a complete understanding of how network traffic would reach the
watcher and what it would do with the traffic. After researching common local network practices
and modern network switches, we formally specified how network traffic would reach the
"Watcher"

How our application will receive traffic from the network:

-The computer will be connected to a port providing port mirroring functionality, passing
along all traffic destined for any port to the "Watcher"

-The NIC of the "Watcher" will support promiscuous mode to capture traffic destined for
mac addresses besides its own

2)
We now have a specification for how data will be transferred between the front end and back end
as well as the format of the data.

-The data will be sent from the backend in a JSON format to be used by the React Front
End. This is useful because the front end utilizes javascript, so receiving data in a form that can
be easily transformed into a javascript object is important.

3)

Determining a method for querying data from the back end is important to our application. We
decided that the front end will use simple HTTP requests to get data from the backend. This
involves sending an HTTP get request, and awaiting a response from the backend, which
contains JSON data in its payload.

